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Abstract: 

The effect of a uniform rotation on the onset of buoyancy driven thermal convection in a horizontal layer of liquid is 

investigated using the classical linear stability analysis when both lower and upper bounding surfaces of the fluid layer 

are considered as permeable and thermally insulating. The Galerkin method is used to obtain the eigenvalue equation 

which is then computed numerically. Numerical results are obtained for a wide range of values of the boundary 

parameters characterizing the permeable nature of the boundaries. It is observed that limiting cases of the parameters 

include various combinations of  hydrodynamic boundary conditions as the special cases. Results of this analysis indicate 

that the uniform rotation has the stabilizing effect on the onset of convection. The asymptotic behaviour of the critical 

Rayleigh number for large values of the Taylor number is also obtained. 
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1. Introduction: 

The stabilizing effect of rotation has been established by Chandrasekhar [1] on the onset of buoyancy driven 

convection for thermally conducting case of various combinations of hydrodynamic boundary conditions. The 

effect of rotation on convective instability induced by both surface tension and buoyancy has been studied by 

Namikawa et al. [2] using the classical linear stability analysis and by Gupta and Dhiman [3] using the 

modified linear stability analysis, for the case of thermally conducting lower rigid boundary and thermally 

insulating upper free boundary. Recently, the effect of uniform rotation on the onset of combined surface 

tension and buoyancy driven convection has been studied by Gupta and Surya [4] for thermally insulating 

case when the lower boundary is rigid and the upper one is free. 

In this paper, we investigate the effect of rotation on the onset of buoyancy driven thermal convection in the 

more general frame work of the boundary conditions when both the upper and lower boundaries are thermally 

insulating and permeable on which the boundary conditions as specified by Beavers and Joseph [5] are 

applicable, using the classical linear stability analysis. The present analysis extends the work of Gupta and 

Kalta [6] to include the effect of uniform rotation. The Galerkin method is used to find the eigenvalue 

equation analytically. The numerical results obtained for a wide range of the parameters involved are 

presented. The results of this analysis indicate that the rotation has the stabilizing effect. Further, the critical 

wave number at the onset of convection is found to be zero up to a certain threshold speed of rotation and 

attains a non-zero value when the speed of rotation becomes larger than the threshold speed. The asymptotic 

behavior of the critical Rayleigh numbers for large values of Taylor numbers is obtained. A detail description 

of the marginal stability curves showing the influence of the uniform rotation on the onset of convection of 

liquid layer is also given.  

2. Formulation of the Problem: 

We consider an infinite horizontal layer of viscous and incompressible liquid of uniform thickness d heated 

from below which is kept rotating with a constant angular velocity   about an axis parallel to the direction of 

gravity. Both the lower and upper boundary surfaces are thermally insulating and permeable on which the 

boundary condition as specified by Beavers and Joseph [5] are applicable. We choose a Cartesian coordinate 

system of axes with the x and y axes of the fluid layer in the plane of the lower boundary with positive 

direction of the z axis along the vertically upward direction so that the fluid layer is confined between the 

planes at 0z   and 1z  . A uniform temperature gradient is maintained across the layer by maintaining the 
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lower boundary surface at a uniform temperature 0T and the upper one at temperature 1 0  ( T )T  . Following the 

usual procedure for obtaining the non-dimensional form of the governing equations (Chandrasekhar [1]), are 

given as  

2 2 2 22

1

( )( ) ,D a D a p w D     T                                                                                                                 (2.1)

 
 2 2 2( ) ,rD a p P Ra w                                                                                                                             (2.2) 

 2 22

1

( ) .D a p Dw    T                                                                                                                              (2.3)  

where w is the z-component of the perturbation velocity,   is the z-component of vorticity,   is the 

temperature perturbation, a is the horizontal wave number, /rP    is the thermal Prandtl number, 
4 /R g d     is the Rayleigh number, 2 4 24 /d  T  is the Taylor number with  as the volume 

coefficient of thermal expansion, 0 1( ) /T T d   the maintained temperature gradient, g the gravitational 

acceleration,   the kinematic viscosity,  the thermal diffusivity and r ip p ip   represents the growth rate 

of perturbations (a complex in general), rp  and ip  being real, /D d d z . We have chosen d , 
2 /d   and 

/d    as the units of length, time and temperature respectively. 

Since both the lower and upper boundary surfaces are fixed and thermally insulating, the appropriate 

boundary conditions are: 

0,w   0,D  0 0,D K    at 0z  ,                                                                                                       (2.4) 

0,w   0,D  1 0,D K    at 1.z                                                                                                          (2.5) 

Further, as both the upper and lower boundary surfaces of the liquid layer are assumed to be permeable on 

which the boundary conditions as specified by Beavers and Joseph [5] are applicable, given by 

2

0 0,D w K Dw   at 0z  ,                                                                                                                            (2.6) 

2

1 0,D w K D w  at 1z  .                                                                                                                             (2.7) 

where 0K  and 1K  are non-negative dimensionless parameters characterizing the permeable nature of the 

lower and upper boundary respectively.  

We restrict our analysis to the case when the marginal state is stationary so that the marginal state is 

characterized by setting 0p   in Equations (2.1)-(2.3) and obtain  

1

22 2 2( ) ,D a w D   T                                                                                                                             (2.8) 

2 2 2( ) ,D a Ra w                                                                                                                                       (2.9)

2

1

2 2( ) .D a Dw   T                                                                                                                               (2.10)  

Equations (2.8) -(2.10) together with boundary conditions given by Equations (2.4) -(2.7) pose an eigenvalue 

problem. 

3. Solution of the Problem: 

The single term Galerkin method is convenient for solving the present problem (Finlayson [7]). Accordingly, 

the unknown variables ,w   and   are written as  

 1,w Aw  
1B  and

1.C                                                                                                                    (3.1)                                                                                                               

where A , B , C  are arbitrary constants and 1,w 1, 1  are the trial functions which are chosen suitably 

satisfying the boundary conditions (2.4)-(2.7). 

Multiplying Eq. (2.8) by ,w  Eq. (2.9) by  and Eq. (2.10) by , integrating each term of the equations with 

respect to z  from 0 to 1, using the boundary conditions (2.4)-(2.7). Substituting for ,w   and  from Eq. 

(3.1), we obtain the following system of linear homogeneous algebraic equations: 
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2 2 2 2 2 2 4 2

0 1 1 1 1 1 1 1 1 1 1

1

2{ ( (0)) ( (1)) ( ) 2 ( ) } C 0,K Dw K Dw D w a Dw a w A w B w D             T                               (3.2)
 

2 2 2 2

1 1 1 1( ) 0,Ra w A D a B                                                                                                                      (3.3) 

2 2 2 2 2

1 1 0 1 1 1 1

1

1
2 { ( (0)) ( (1)) ( ) } 0.w D A K K D a C            T                                                                        (3.4) 

The system of Equations (3.2) - (3.4) will have a non-trivial solution if and only if  

2 2 2 2 2 2 4 2

0 1 1 1 1 1 12 2

1 1

2
2 2 21 1

1 12 2 2 2 2

0 1 1 1 1 1

1
( (0)) ( (1)) ( ) 2 ( )

( ) .
( (0)) ( (1)) ( )

R K D w K D w D w a D w a w
a w

w D
D a

K K D a

        

 
   

     




 

   

T
                              (3.5) 

where .....   denotes integration with respect to z  between 0z   and 1.z  We select the trial functions 

satisfying the boundary conditions (2.4) - (2.7)  as 

2 0 1 0 1 1
1

0 1 0 1 0 1 0 1

2(3 ) 12 2( 6)
(z 1) ,

4( ) 12 4( ) 12)

K K K K K
w z z z

K K K K K K K K

    
    

      
                                                (3.6) 

1 1,                                                                                                                                                               (3.7) 

 
3 2

1 0 1 0 1 0 1 0 1

0 1 0 1

1
3( 5 3 12) ( 6 )z ( 6) .

2 4( ) 12
z K K K K z K K K K

K K K K
            

               (3.8) 

Substitution of trial functions given by Eqs. (3.6)-(3.8) into the Eq. (3.5)  yields R  in terms of  ,a  0K , 1K  

and T given by 

 

 0 1 0 1 0 1 0 12

0 1 0 1

2 2 2 2 2

0 1 1 0 1 1 1 1

4 2 2 2 2

0 1 1 0 1 1 1 1

2 2

0 1 1

10
504{ 4( ) 12}{ 9( ) 72}

7{ 9( ) 72}

24 [ ( 15 72) 3 (5 70 312) 72( 13 51)]

[ ( 17 76) (17 272 1140) 4(19 285 1116)]

12[ ( 15

R K K K K K K K K
K K K K

a K K K K K K K K

a K K K K K K K K

K K K

       
  

        

        

  2 2 2

0 1 1 1 1 0 1 0 1

2 2 2 2 2

0 1 0 1 0 1 1 0 1 1 1 1

72) 3 (5 70 312) 72( 13 51)] / [42{ 4( ) 12}

{ 9( ) 72} [ ( 15 72) 3 (5 70 312) 72( 13 51)]] .

K K K K K K K K K

K K K K a K K K K K K K K

         

            

T

    (3.9) 

 

For given values of 0K , 1K  and T , Eq. (3.9) gives the Rayleigh number R  as a function of the wave 

number a. The minimum of  R  is the critical Rayleigh number cR   and the value of a at which R  attains 

minimum is the critical wave number ca . 

4. Numerical Results and Discussion: 

The numerical calculations are carried out using the relation (3.9) to obtain the values of critical Rayleigh 

number cR  and corresponding critical wave number ca  for assigned values of the parameters 0K , 1K  and T

and  presented in Table 1. 

From Table 1, we observe that for assigned values of the pair 0 1( , )K K , value of cR increases with increasing 

values of the Taylor number T , indicating that rotation has the stabilizing effect on the onset of convection. 

On the other hand, for a fixed value of the permeability parameter 
0K  (or 

1K ), when 
1K (or  

0K ) is increased, 

cR increases for a given value of T indicating of the stabilizing effect of the permeability parameter 
0K  (or 

1K ) on the onset of convection. Also, we find that the critical wave number at the onset of convection is zero 

up to a certain threshold speed of rotation and attains non-zero value when the speed of rotation becomes 

larger than that of threshold speed. 
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Table 1. Variation of cR  and ca  for various values of
0K , 

1K and T . 

 0T  10T  210T
 310T

 610T  

0K  1K  cR  ca  cR  ca  cR  ca

 
cR  ca  cR  ca  

10
-8

 10
-8 

120.00 0 132.28 0 242.87 0 1069.46 2.67 106975 12.66 

10
-8

 10
-1 

122.47 0 134.52 0 242.99 0 1064.15 2.65 106951 12.66 

10
-8

 1 142.22 0 152.74 0 247.36 0 1027.05 2.45 106961 12.62 

10
-8

 10 231.11 0 238.67 0 306.68 0 966.37 1.59 111601 12.56 

10
-8

 10
8
 320.00 0 327.26 0 392.56 0 1044.21 0.84 123696 12.68 

10
-1

 10
-8 

122.47 0 134.52 0 242.99 0 1064.15 2.65 106951 12.66 

10
-1

 10
-1 

124.96 0 136.78 0 243.19 0 1058.81 2.62 106922 12.65 

10
-1

 1 144.88 0 155.20 0 248.12 0 1021.42 2.42 106899 12.61 

10
-1

 10 234.58 0 242.01 0 308.89 0 959.95 1.54 111413 12.56 

10
-1

 10
8
 324.39 0 331.53 0 395.78 0 1037.45 0.73 123441 12.67 

1 10
-8 

142.22 0 152.74 0 247.36 0 1027.05 2.45 106961 12.62 

1 10
-1 

144.88 0 155.20 0 248.12 0 1021.42 2.42 106899 12.61 

1 1 166.15 0 175.22 0 256.82 0 981.96 2.19 106617 12.57 

1 10 262.54 0 269.11 0 328.19 0 915.26 1.08 110123 12.48 

1 10
8
 360.00 0 366.32 0 423.22 0 992.16 0 121601 12.58 

10 10
-8 

231.11 0 238.67 0 306.68 0 966.37 1.59 111601 12.56 

10 10
-1 

234.58 0 242.01 0 308.89 0 959.95 1.54 11413 12.55 

10 1 262.54 0 269.11 0 328.19 0 915.26 1.08 110123 12.48 

10 10 392.73 0 397.39 0 439.34 0 858.86 0 109514 12.26 

10 10
8
 530.53 0 534.93 0 574.59 0 971.24 0 118711 12.28 

10
8
 10

-8 
320.00 0 327.26 0 392.56 0 1044.21 0.84 123696 12.68 

10
8
 10

-1 
324.39 0 331.53 0 395.78 0 1037.45 0.73 123441 12.67 

10
8
 1 360.00 0 366.32 0 423.22 0 992.16 0 121601 12.58 

10
8
 10 530.53 0 534.93 0 574.59 0 971.24 0 118711 12.28 

10
8
 10

8
 720.00 0 724.08 0 760.82 0 1128.16 0 127291 12.26 

 

 From Table 1, it is evident that values of cR and ca  obtained here for various assigned values of 0K   and 1K  

are exactly same as those obtained by Gupta and Kalta [3] in the absence of rotation, that is, when 0.T   

Limiting Cases: 

The limiting cases of the parameters 0K  and 1K  in the relation (3.9) give rise to the following cases.  

Case 1.  When 0 0K  and 1 0K  that is, when both the lower and upper boundaries are dynamically free.  

In this case, we obtain R from the eigenvalue Eq.(3.9)  in terms of  a and T as 

2 4

2

17 31 289
120 1

84 3024 168(168 17 )
.R a a

a

 
    

 
T.                                                                                       (4.1) 

The ( , )a R  curves corresponding to neutral stability are plotted in Fig.1(a) for various prescribed values of T

using the relation (4.1)  showing that the increasing values of  T  has stabilizing effect at the onset of 

convection. The variation of the critical wave number ca  with T at the onset of convection is illustrated in 

Fig.1(b). From Fig.1(b), we observe that the  critical value of the Rayleigh number occurs at 0ca  up to a 

certain threshold value of Taylor number 195,T whereas cR occurs at a non-zero value of the wave 

number when T is greater than the threshold value. 
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             (a)                                                                                            (b) 

Figure 1: (a) Neutral stability curves for various values of T . (b) Variation of ca as a function of T . 

Further, the asymptotic behavior of cR and  ca  for large values of the Taylor number T  obtained numerically 

are given by 
2

310.69cR  T  and  
1

61.3ca  T    as 
6(10 )T . 

Case 2.  When 0K   and 1K   that is, when both boundaries are dynamically rigid.  

In this case, we obtain R from the eigenvalue Eq. (3.9) in terms of  a  and T as 

2 4

2

1 1 1
720 1

21 504 42(42
.

)
R a a

a

 
    

 
T                                                                                               (4.2) 

The ( , )a R  curves corresponding to neutral stability are plotted in Fig.2.(a) for various prescribed values of 

T using the relation (4.2)  showing that the increasing values of  T  has stabilizing effect at the onset of 

convection. The variation of the critical wave number ca  with T at the onset of convection is illustrated in 

Fig.2 (b). From Fig.2 (b), it is that the critical value of the Rayleigh number occurs at 0ca  up to a certain 

threshold value of Taylor number 3527,T whereas cR occurs at a non-zero value of the wave number 

when T is greater than the threshold value. 

                              
    (a)                                                                                                (b) 

Figure 2. (a) Neutral stability curves for various values of T . (b)  Variation of ca as a function of T . 
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Further, the asymptotic behavior of cR and ca  for large values of the Taylor number T  obtained numerically 

are given by  

 
2

313.9cR  T  and  
1

61.34ca  T      as 8(10 )T . 

Case 3. For the case when either 0 0K  and 1K  , that is, when lower boundary is dynamically free and 

upper one is rigid, or 0K   and 1 0K  , that is,  when lower boundary is dynamically rigid and upper one 

is free. In either case, we obtain R from  the  eigenvalue  Eq. (3.9)  in terms of  a and T as  

2 4

2

2 19 1
320 1 .

21 4536 21(21 )
R a a

a

 
    

 
T                                                                                              (4.3) 

The ( , )a R  curves corresponding to neutral stability are plotted in Fig.3.(a) for various prescribed values of 

T using the relation (4.3)  showing that the increasing values of  T  has stabilizing effect at the onset of 

convection. The variation of the critical wave number ca  with T at the onset of convection is illustrated in 

Fig.3 (b). From Fig.3 (b), we observe that the  critical value of the Rayleigh number occurs at 0ca  up to a 

certain threshold value of Taylor number 881,T (approximately) whereas cR occurs at a non-zero value of 

the wave number when T is greater the threshold value. 

                                             
    (a)                                                                                                                   (b) 

Figure 3. (a) Neutral stability curves for various values of T . (b)  Variation of 
ca as a function of T . 

 

Further, the asymptotic behavior of cR and ca  for large values of the Taylor number T  obtained numerically 

are given by 
2

310.4cR  T  and  
1

61.32ca  T    as 8(10 )T . 

From the three limiting cases discussed above it is also observed that the obtained values of cR and  ca  are 

exactly same with those obtained by Jakeman [8] for various hydrodynamic combinations of thermally 

insulating boundaries when 0T . 

       Conclusions: 

The linear stability analysis of thermal convection in the presence of rotation with insulating permeable 

boundaries has been studied theoretically and conclude that  

1. For assigned values of the permeability parameters, rotation has the stabilizing effect on the onset of 

convection. It is interesting to note that value of the critical wave number at the onset of convection is 

found to be zero up to a certain threshold speed of rotation and attains non-zero value when the speed 

of rotation becomes larger than that threshold speed. 

2. For a fixed value of any one of the two permeability parameters, increasing values of the other 

parameter has stabilizing effect on the onset of convection for a given speed of rotation. 
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